Konten [Tampil]
PREFACE
Reservoir engineering in the US emphasizes the problem associated with solution gas drive reservoirs. In fact, there are very few reservoirs in the US currently producing under primary production that approximate steady-state conditions. Many years ago when only five or six days of capacity production were permitted pre month, there were many water drive reservoir became dominated by solution gas drive because the production rate under this drive exceeded the water encroachment capabilities of the reservoir. Thus, today most of the reservoir engineering techniques taught in the US emphasize solution gas drive problems.
Most non US Production is from reservoir that produce under steady state conditions, but these reservoir are operated by US personnel trained in US. Reservoir engineering methods that emphasize non steady state conditions. Thus, it is common for pseudosteady-state and other methods to be misapplied in non US areas. For Example, the horner method is based on infinite-acting equations but is routinely applied to wells that are in steady state at the time of shutin; the Matthews, Brons, and Hazebroek method of determining average pressures, devised for pseudsteady state reservoir, is used to determine average pressure in steady state reservoir and reservoir computer models utilize only one outside cell for the water drive